翻訳と辞書
Words near each other
・ Dedigama
・ Dedigama Electoral District
・ Dedimar
・ Dedimus potestatem
・ Dedin
・ Dedina
・ Dedina Bara
・ Dedina Mládeže
・ Dedinac
・ Dedekind group
・ Dedekind number
・ Dedekind psi function
・ Dedekind sum
・ Dedekind zeta function
・ Dedekind-infinite set
Dedekind–Hasse norm
・ Dedekind–MacNeille completion
・ Dedeköy
・ Dedeköy, Hamamözü
・ Dedeköy, Koçarlı
・ Dedekılıcı, Göle
・ Dedeler
・ Dedeler, Göynük
・ Dedeler, Gülnar
・ Dedeler, Karacasu
・ Dedeler, Mersin (disambiguation)
・ Dedeler, Mudurnu
・ Dedeler, Tarsus
・ Dedeler, Çubuk
・ Dedeline Mibamba Kimbata


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dedekind–Hasse norm : ウィキペディア英語版
Dedekind–Hasse norm
In mathematics, in particular the study of abstract algebra, a Dedekind–Hasse norm is a function on an integral domain that generalises the notion of a Euclidean function on Euclidean domains.
==Definition==

Let ''R'' be an integral domain and ''g'' : ''R'' → Z≥ 0 be a function from ''R'' to the non-negative rational integers. Denote by 0''R'' the additive identity of ''R''. The function ''g'' is called a Dedekind–Hasse norm on ''R'' if the following three conditions are satisfied:
* ''g''(0''R'') = 0,
* if ''a'' ≠ 0''R'' then ''g''(''a'') > 0,
* for any nonzero elements ''a'' and ''b'' in ''R'' either:
*
* ''b'' divides ''a'' in ''R'', or
*
* there exist elements ''x'' and ''y'' in ''R'' such that 0 < ''g''(''xa'' − ''yb'') < ''g''(''b'').
The third condition is a slight generalisation of condition (EF1) of Euclidean functions, as defined in the Euclidean domain article. If the value of ''x'' can always be taken as 1 then ''g'' will in fact be a Euclidean function and ''R'' will therefore be a Euclidean domain.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dedekind–Hasse norm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.